top of page
precinarguzihealth

BBG Workout 2 0 PDF Download: Tips and Tricks from Real Women Who Tried It



A primary goal of traditional post-workout nutrient timing recommendations is to replenish glycogen stores. Glycogen is considered essential to optimal resistance training performance, with as much as 80% of ATP production during such training derived from glycolysis [6]. MacDougall et al. [7] demonstrated that a single set of elbow flexion at 80% of 1 repetition maximum (RM) performed to muscular failure caused a 12% reduction in mixed-muscle glycogen concentration, while three sets at this intensity resulted in a 24% decrease. Similarly, Robergs et al. [8] reported that 3 sets of 12 RM performed to muscular failure resulted in a 26.1% reduction of glycogen stores in the vastus lateralis while six sets at this intensity led to a 38% decrease, primarily resulting from glycogen depletion in type II fibers compared to type I fibers. It therefore stands to reason that typical high volume bodybuilding-style workouts involving multiple exercises and sets for the same muscle group would deplete the majority of local glycogen stores.




bbg workout 2 0 pdf download




There is evidence that adding protein to a post-workout carbohydrate meal can enhance glycogen re-synthesis. Berardi et al. [26] demonstrated that consuming a protein-carbohydrate supplement in the 2-hour period following a 60-minute cycling bout resulted in significantly greater glycogen resynthesis compared to ingesting a calorie-equated carbohydrate solution alone. Similarly, Ivy et al. [27] found that consumption of a combination of protein and carbohydrate after a 2+ hour bout of cycling and sprinting increased muscle glycogen content significantly more than either a carbohydrate-only supplement of equal carbohydrate or caloric equivalency. The synergistic effects of protein-carbohydrate have been attributed to a more pronounced insulin response [28], although it should be noted that not all studies support these findings [29]. Jentjens et al. [30] found that given ample carbohydrate dosing (1.2 g/kg/hr), the addition of a protein and amino acid mixture (0.4 g/kg/hr) did not increase glycogen synthesis during a 3-hour post-depletion recovery period.


Another purported benefit of post-workout nutrient timing is an attenuation of muscle protein breakdown. This is primarily achieved by spiking insulin levels, as opposed to increasing amino acid availability [35, 36]. Studies show that muscle protein breakdown is only slightly elevated immediately post-exercise and then rapidly rises thereafter [36]. In the fasted state, muscle protein breakdown is significantly heightened at 195 minutes following resistance exercise, resulting in a net negative protein balance [37]. These values are increased as much as 50% at the 3 hour mark, and elevated proteolysis can persist for up to 24 hours of the post-workout period [36].


Perhaps the most touted benefit of post-workout nutrient timing is that it potentiates increases in MPS. Resistance training alone has been shown to promote a twofold increase in protein synthesis following exercise, which is counterbalanced by the accelerated rate of proteolysis [36]. It appears that the stimulatory effects of hyperaminoacidemia on muscle protein synthesis, especially from essential amino acids, are potentiated by previous exercise [35, 50]. There is some evidence that carbohydrate has an additive effect on enhancing post-exercise muscle protein synthesis when combined with amino acid ingestion [51], but others have failed to find such a benefit [52, 53].


Esmarck et al. [69] provided the first experimental evidence that consuming protein immediately after training enhanced muscular growth compared to delayed protein intake. Thirteen untrained elderly male volunteers were matched in pairs based on body composition and daily protein intake and divided into two groups: P0 or P2. Subjects performed a progressive resistance training program of multiple sets for the upper and lower body. P0 received an oral protein/carbohydrate supplement immediately post-exercise while P2 received the same supplement 2 hours following the exercise bout. Training was carried out 3 days a week for 12 weeks. At the end of the study period, cross-sectional area (CSA) of the quadriceps femoris and mean fiber area were significantly increased in the P0 group while no significant increase was seen in P2. These results support the presence of a post-exercise window and suggest that delaying post-workout nutrient intake may impede muscular gains.


In an elegant single-blinded design, Cribb and Hayes [70] found a significant benefit to post-exercise protein consumption in 23 recreational male bodybuilders. Subjects were randomly divided into either a PRE-POST group that consumed a supplement containing protein, carbohydrate and creatine immediately before and after training or a MOR-EVE group that consumed the same supplement in the morning and evening at least 5 hours outside the workout. Both groups performed regimented resistance training that progressively increased intensity from 70% 1RM to 95% 1RM over the course of 10 weeks. Results showed that the PRE-POST group achieved a significantly greater increase in lean body mass and increased type II fiber area compared to MOR-EVE. Findings support the benefits of nutrient timing on training-induced muscular adaptations. The study was limited by the addition of creatine monohydrate to the supplement, which may have facilitated increased uptake following training. Moreover, the fact that the supplement was taken both pre- and post-workout confounds whether an anabolic window mediated results. 2ff7e9595c


1 view0 comments

Recent Posts

See All

Comments


!
Widget Didn’t Load
Check your internet and refresh this page.
If that doesn’t work, contact us.
bottom of page